Coexistence in preferential attachment networks
Joint work with Tonći Antunović and Elchanan Mossel

Miklós Z. Rácz
UC Berkeley

PIMS Probability Summer School, UBC
June 2, 2014.
Alice moves to Berkeley
Alice moves to Berkeley
Model Two types Many types

Alice moves to Berkeley
This is a possible way to think about *product adoption*.

Main question:

Given this model of product adoption, what will happen to the competing companies?
Coexistence in markets

This is a possible way to think about *product adoption*.

Main question:

Given this model of product adoption, what will happen to the competing companies?

Will one company take over the market? Will the companies coexist?
Coexistence in markets

This is a possible way to think about *product adoption*.

Main question:

Given this model of product adoption, what will happen to the competing companies?

<table>
<thead>
<tr>
<th>Will one company take over the market?</th>
<th>Will the companies coexist?</th>
</tr>
</thead>
</table>

Empirically: in many markets competing companies *coexist.*

![at&t, verizon, Sprint, T-Mobile](image)
Coexistence in markets

This is a possible way to think about *product adoption*.

Main question:

Given this model of product adoption, what will happen to the competing companies?

Will one company take over the market? Will the companies coexist?

Empirically: in many markets competing companies *coexist*.

<table>
<thead>
<tr>
<th>at&t</th>
<th>verizon</th>
<th>Sprint</th>
<th>T-Mobile</th>
</tr>
</thead>
<tbody>
<tr>
<td>107m</td>
<td>98m</td>
<td>56m</td>
<td>33m</td>
</tr>
</tbody>
</table>

Main qualitative feature of our model:

In “many” cases companies coexist.
Evolution of graph: **linear preferential attachment model**

- **Initial graph** $G_0 = (V_0, E_0)$.
- **At each time step:**
 - add a new node;
 - add m edges, connecting new node to existing nodes.
- **Edges chosen according to linear preferential attachment**, i.e., for each of the m edges independently let

$$
P(\text{connect to } v) = \frac{\deg(v)}{Z}.
$$
"Extra layer" on top of preferential attachment dynamics.

- Every node in the initial graph has a type / color, out of N possible types / colors.
- When a node is added to the graph, it also gets a type.
“Extra layer” on top of preferential attachment dynamics.

- Every node in the initial graph has a type / color, out of N possible types / colors.
- When a node is added to the graph, it also gets a type.
 - The types of its neighbors can be represented by

 $$u = (u^1, \ldots, u^N),$$

 where u^i is the number of neighbors of type i.

Model

Two types

Many types
Type adoption

“Extra layer” on top of preferential attachment dynamics.

- Every node in the initial graph has a type / color, out of N possible types / colors.
- When a node is added to the graph, it also gets a type.
 - The types of its neighbors can be represented by
 \[
 u = (u^1, \ldots, u^N),
 \]
 where u^i is the number of neighbors of type i. Then:
 \[
 P(\text{new node is of type } i \mid u) = p_{i|u}.
 \]

- $\{p_{i|u}\}_{u,i}$ are parameters of the model.
Examples

Model Two types Many types

Linear model: \(p^i_u = \frac{u^i}{m} \)

Plurality: \(p^i_u = 1 \left[i = \operatorname{arg\ max} u^j \right] \)

Don’t listen, pick randomly: \(p^i_u = \frac{1}{N} \)

...or anything else...
Main question:

What are the fractions of nodes of each type?

- Does one type dominate asymptotically?
- Or do types coexist in the limit?
Related work

- **Word-of-mouth recommendations**
 - Strong influence on consumer behavior (Dichter (1966), Goldenberg, Libai, Muller (2001))
 - Online feedback mechanisms (Dellarocas (2003)) and social networks (Leskovec, Adamic, Huberman (2007))

- **Word-of-mouth learning in economics**
 - Ellison, Fudenberg (1995)

- **Competing markets**
Related work

- Epidemiology
 - Under what conditions does the disease die out or take over?
 - Underlying network structure greatly affects the epidemic threshold (Pastor-Satorras, Vespignani (2001))

- Computer science
 - Diffusion of information and opinions
 - Prakash et al. (2012): winner takes all

- Probability theory
 - Competing first passage percolation
 - Antunovic et al. (2011), Deijfen, van der Hofstad (2013): winner takes all
Related work

- Out-of-equilibrium viewpoint of Arthur (80’s—present)
 - Systems with positive feedback due to increasing returns
 - Evolution of technology choice; industry locations

- Commonalities:
 - Qualititatively: multiple possible long-run states, unpredictability, lock-in, path dependence, symmetry breaking.
 - Technically: nonlinear Pólya urn processes.

- Differences:
 - Explicit modeling of underlying network
Focus now on only $N = 2$ types:

- When only two types (red / blue), then parameters are $\{p|_k\}_{0 \leq k \leq m}$:
 \[
 \mathbb{P}(\text{red} | k \text{ red neighbors}) = p|_k
 \]

- $A_n := \# \text{ red nodes}, \quad a_n := \text{fraction of red nodes}$
- $B_n := \# \text{ blue nodes}$
- $X_n := \sum_{v:\text{ red}} \deg(v) = \# \text{ red half-edges}, \quad x_n := \frac{X_n}{X_n + Y_n}$
- $Y_n := \sum_{v:\text{ blue}} \deg(v) = \# \text{ blue half-edges}$
Main results — linear model

Theorem (Linear model)

Assume that \(p_k = k/m \) for all \(0 \leq k \leq m \), and that \(0 < a_0 < 1 \).

- \(a_n \) converges a.s.;
- the limiting distribution
 - has full support on \([0, 1]\),
 - has no atoms,
 - depends only on \(X_0, Y_0 \) and \(m \).
Empirical histograms of a_n in the linear model for $n = 10^5$, from 2×10^5 simulations.
Main results — nonlinear models

Theorem (Nonlinear models)

Assume $p_k \neq k/m$ for some $0 \leq k \leq m$, and $0 < a_0 < 1$. Then

- a_n converges a.s.,
- the limit is a point in the finite set

$$Z_P := \{z \in [0, 1] : P(z) = 0\},$$

where

$$P(z) = \frac{1}{2} \sum_{k=0}^{m} \binom{m}{k} z^k (1 - z)^{m-k} \left(p_k - \frac{k}{m}\right).$$

Why? a_n evolves like a stochastic version of the ODE $dz/dt = P(z)$.
Proof ideas

\[\{x_n\}_{n \geq 0} \text{ is a stochastic approximation process with function } P: \]

\[x_{n+1} - x_n = \frac{1}{n} \left(P(x_n) + \xi_{n+1} + R_n \right), \]

- Introduced in 1951 by Robbins and Monro
- Most results follow from known results about stochastic approximation processes
- In particular:
 - Hill, Lane, and Sudderth (1980)
 - and subsequent refinements by Pemantle
- Variance arguments for \((0, 1)\)
- Domination arguments for the endpoints \(\{0, 1\}\)
Model Two types Many types

Coexistence

\[m = 3, \ p_{|0} + p_{|3} = 1, \ p_{|1} + p_{|2} = 1 \] (no inherent bias)

Winner can take all iff \(p_{|0} = 0 \) and \(P'(0) < 0 \), or \(p_{|m} = 1 \) and \(P'(1) < 0 \).
Setup

- $N \geq 3$ types / colors
- $A_n = (A^1_n, \ldots, A^N_n)$: number of each type, a_n: normalized
- $X_n = (X^1_n, \ldots, X^N_n)$: sum of degrees of each type, x_n: normalized
- $\{p^i_u\}_{u,i}$: parameters of the model

Question: asymptotic behavior of a_n?
Linear model

Same results as for $N = 2!$

Theorem (Linear model)

Assume that $p^i_u = \frac{u^i}{m}$ for all u, i, and that $X^i_0 > 0$ for all i.

- a_n converges a.s.;
- the limiting distribution
 - has full support on Δ^N,
 - has no atoms,
 - depends only on X_0 and m.
Nonlinear models

A key role in the asymptotic behavior of the process \(\{a_n\}_{n \geq 0} \) is played by the vector field

\[
P(z) = \frac{1}{2} \sum_{i=1}^{N} \sum_{u} \binom{m}{u} (z)^u \left[p^i_u - \frac{u^i}{m} \right] \delta^i,
\]

Conjecture (Nonlinear models)

Assume that \(p^i_u \neq \frac{u^i}{m} \) for some \(u, i \), and that \(X^i_0 > 0 \) for all \(i \).
Then

- \(a_n \) converges a.s.,
- the limit is a point in the set

\[
Z_P := \left\{ z \in \Delta^N : P(z) = 0 \right\}.
\]
Summary and open questions

Takeaways:

▶ Model:
 type adoption coupled w/ preferential attachment dynamics
▶ Can explain coexistence in markets

Open questions:

▶ Limiting density for linear model
▶ $N \geq 3$ types: understanding the vector field P
▶ Related models...
Summary and open questions

Takeaways:

- **Model:** type adoption coupled with preferential attachment dynamics
- Can explain coexistence in markets

Open questions:

- Limiting density for linear model
- $N \geq 3$ types: understanding the vector field P
- Related models...

Thank you!