We introduce a new model of competition on growing networks. In particular, we couple type adoption with preferential attachment. Main qualitative feature of the model: often competitors will coexist.

Graph evolution:
- linear preferential attachment
 - $G_0 = (V_0, E_0)$ initial graph
 - m new edges w/each node
 - P (connect to v) = $\frac{\deg(v)}{\sum_x \deg(x)}$

Type adoption: via initial connections and randomness
- Initial nodes have a type/color out of N possible ones.
- Incoming nodes get a type when they enter the network:
 - $u = $ # initial neighbors of type i
 - P (new node is of type i | u) = p_{ui}
 - $\{p_{ui}\}_{i=1}^N$ are parameters of the model.
- When $N = 2$ (red/blue), let $p_k := P(\text{red} | k \text{ red neighbors})$.

Intuition
- Three or more types. In the linear model the same results apply. In nonlinear models, the evolution of the fractions of types is governed by an ODE driven by a vector field P, which is the multidimensional analogue of the polynomial P. The behavior of this ODE in general is open.
- Changing preferences.
- Allowing multiple types for a single individual.
- Incorporating marketing / strategic considerations.

Acknowledgements
We thank E. Bodžianš, G. Korniss, G. Meszéna, J. Nórczy, N. Ross, A. Sly, and I. Stanton for helpful discussions. This work is supported by NSF grant DMS 1106999, DOD ONR grant N000141110140 (E.M., M.Z.R.), and by a UC Berkeley Graduate Fellowship (M.Z.R.).

Motivation/application
- Sprint
- Mobile
- AT&T
- T-Mobile
- Polyvore

Theorem (Linear model).
Suppose that $p_k = k/m$ for all $0 \leq k \leq m$, and that initially there are nodes of both colors. Then the fraction of red nodes, x_n, converges almost surely to a random point in $[0,1]$.

Further directions
- Three or more types. In the linear model the same results apply. In nonlinear models, the evolution of the fractions of types is governed by an ODE driven by a vector field P, which is the multidimensional analogue of the polynomial P. The behavior of this ODE in general is open.
- Changing preferences.
- Allowing multiple types for a single individual.
- Incorporating marketing / strategic considerations.

Main results
We are interested in the fraction of nodes of each type. In the case of two colors (red/blue) we provide a complete phase diagram of the asymptotic behavior of the process.

Phase diagrams when there is no bias towards either color ($p_k = k/m$) and initially there are nodes of both colors. Then the fraction of red nodes, x_n, converges almost surely to a random point in $[0,1]$. Furthermore, the limiting distribution has full support on $[0,1]$ and no point masses.

Theorem (Nonlinear models).
Suppose that $p_k \neq k/m$ for some $0 \leq k \leq m$, and initially there are nodes of both colors. Then the fraction of red nodes converges a.s. to a random point in the finite zero set of the polynomial

$$P(z) = \frac{1}{2} \sum_{k=0}^m \binom{m}{k} z^k (1-z)^{m-k} \left(p_k - \frac{k}{m} \right)$$