Election manipulation: the average-case Joint works with Elchanan Mossel and Ariel Procaccia

Miklós Z. Rácz

UC Berkeley

EconCS Seminar

Berkeley, April 9, 2013.

US Election 2000

Votes in Florida

48.84%

48.85%

1.64%

Nader supporters could have

voted strategically and elected Gore.

Artificial Intelligence & Computer Science

Virtual elections a standard tool in preference aggregation

- Elections can solve planning problems in multiagent systems (Ephrati and Rosenschein, 1991)
- Web metasearch engine (Dwork et al., 2001)
 - engines = voters, web pages = candidates

Threat of manipulation relevant, since software agents

- have computing power,
- have no moral obligation to act honestly.

Quantitative Social Choice

Proof ideas

Coalitions

Quantitative Social Choice

Proof ideas

Coalitions

Social Choice Theory

is the theory of collective decision making

- Originates from Condorcet's voting paradox, late 18th century
- Theory developed in Economics in 1950-70s
- Celebrated results are negative:
 - Arrow's impossibility theorem (1950):
 "irrationality" of ranking 3 or more candidates
 - Gibbard-Satterthwaite theorem (1973-75): any non-dictatorial way of electing a winner out of 3 or more candidates can be manipulated

Basic Setup

- n voters, k candidates
- ► Each voter ranks the candidates: vote of voter *i* denoted by σ_i ∈ S_k
- Social Choice Function (SCF)
 - $f: \mathbb{S}_{k}^{n} \rightarrow [k]$ selects a winner:

$$\sigma = (\sigma_1, \ldots, \sigma_n) \mapsto f(\sigma)$$

Manipulation by a single voter:

Definition

The SCF *f* is manipulable by voter *i* if there exist two ranking profiles $\sigma = (\sigma_i, \sigma_{-i})$ and $\sigma' = (\sigma'_i, \sigma_{-i})$ such that

 $f(\sigma') \stackrel{\sigma_i}{>} f(\sigma)$.

Manipulability

- Ideal: nonmanipulable SCF.
- Q: when is this possible?
- Dictatorship:

$$\operatorname{dict}_{i}(\sigma) := \operatorname{top}(\sigma_{i})$$

…anything socially acceptable?

Manipulability

- Ideal: nonmanipulable SCF.
- Q: when is this possible?
- Dictatorship:

$$\operatorname{dict}_{i}(\sigma) := \operatorname{top}(\sigma_{i})$$

…anything socially acceptable?

Manipulability

…anything socially acceptable?

For 2 candidates:

strategyproofness is equivalent to monotonicity

► For 3 or more candidates: no such examples.

Theorem (Gibbard-Satterthwaite, 1973-75)

Every SCF that takes on at least three values and is not a dictator is manipulable.

Quantitative Social Choice

Proof ideas

Coalitions

Is there a way around manipulation?

Two lines of research:

- Are there SCFs where it is *hard* to manipulate?
- Can manipulation be avoided with good probability?

Assumption: large number of voters and/or candidates.

Computational hardness of manipulation

Idea: election is vulnerable to manipulation only if it can be computed efficiently.

- Bartholdi, Tovey, Trick (1989): there exists a voting rule, such that it is NP-hard to compute a manipulative vote.
- Bartholdi, Orlin (1991): manipulation is NP-hard for Single Transferable Vote (Oakland mayor elections)
- ...many other developments...
- Problem: relies on NP-hardness as a measure of computational difficulty
- Is it hard on average? What if it is typically easy to manipulate?

Quantitative Social Choice

Basic question: is it possible to avoid manipulation with very good probability?

- ~ Random rankings
 - Kelly, 1993: Consider people voting uniformly and independently at random; i.e. σ ∈ Sⁿ_k is uniform.
 - Q: What is the probability of manipulation?

 $M(f) := \mathbb{P}(\sigma : \text{ some voter can manipulate } f \text{ at } \sigma)$

Gibbard-Satterthwaite theorem: If *f* takes on at least 3 values and is not a dictator, then

$$M(f) \geq \frac{1}{\left(k!\right)^n}$$

If manipulation is so unlikely, perhaps we do not care?

Quantitative Social Choice

If *f* is "close" to a dictator $\rightsquigarrow M(f)$ can be very small Quantifying distance:

 $\begin{aligned} \mathbf{D}\left(f,g\right) &= \mathbb{P}\left(f\left(\sigma\right) \neq g\left(\sigma\right)\right) \\ \mathbf{D}\left(f,G\right) &= \min_{g \in G} \mathbb{P}\left(f\left(\sigma\right) \neq g\left(\sigma\right)\right) \end{aligned}$

Assumption: *f* is ε -far from nonmanipulable functions: **D**(*f*, NONMANIP) $\geq \varepsilon$

Conjecture (Friedgut, Kalai, Nisan (2008))

If $k \geq 3$ and $D(f, NONMANIP) \geq \varepsilon$, then

$$M(f) \geq poly(n, k, \varepsilon^{-1})^{-1}$$

and a random manipulation works. In particular: manipulation is easy on average.

Results

Theorem (Friedgut, Kalai, Keller, Nisan (2008,2011))

For k = 3 candidates, if **D** (f, NONMANIP) $\geq \varepsilon$ then

$$M(f) \geq c \frac{\varepsilon^6}{n}$$

If, in addition, f is neutral, then

$$M(f) \geq c' \frac{\varepsilon^2}{n}.$$

Neutrality of *f*: treats all candidates in the same way,

i.e. is invariant under permutation of the candidates.

No computational consequences, since k = 3.

Note: some dependence on *n* is needed, see e.g. plurality: $O(n^{-1/2})$ probability of manipulation.

Results, cont'd

Theorem (Isaksson, Kindler, Mossel (2010,2012))

If $k \ge 4$ and f is neutral, then $D(f, NONMANIP) \ge \varepsilon$ implies

$$M(f) \ge poly(n, k, \varepsilon^{-1})^{-1}$$

Moreover, the trivial algorithm for manipulation works.

Computational consequences.

Removing neutrality:

Theorem (Mossel, R. (2012))

If $k \geq 3$ and $D(f, NONMANIP) \geq \varepsilon$, then

$$M(f) \ge poly(n, k, \varepsilon^{-1})^{-1}$$
.

Moreover, the trivial algorithm for manipulation works.

Why is removing neutrality important?

- Anonymity vs. neutrality:
 - conflict, coming from tie-breaking rules
 - common SCFs anonymous ~> not neutral
- In virtual election setting, neutrality can be not natural, e.g.:
 - (meta)search engine might treat websites in different languages in a different way
 - child-safe (meta)search engine: cannot have adult websites show up
- Sometimes candidates cannot be elected from the start
 - Local elections in Philadelphia, 2011
 - Dead man on NY State Senate 2010 election ballot (he received 828 votes)

Quantitative Social Choice

Proof ideas

Coalitions

Rankings Graph

- Vertices: ranking profiles $\sigma \in S_k^n$
- Edges: if differ in one coordinate, i.e. (σ, σ') is an edge in voter *i* if σ_j = σ'_i for all j ≠ i, and σ_i ≠ σ'_i

- ▶ SCF $f : S_k^n \to [k]$ induces a partition of the vertices
- Manipulation point can only occur on a boundary
- Boundary between candidates *a* and *b* in voter *i*: $B_i^{a,b}$.

Boundary edges

This edge is monotone and nonmanipulable. This edge is monotone-neutral and manipulable. This edge is anti-monotone and manipulable.

Isoperimetry

Recall: $k \ge 3$, uniform distribution, **D** (f, NONMANIP) $\ge \varepsilon$.

Lemma (Isoperimetric Lemma, IKM (2009))

There exist two voters $i \neq j$ such that $B_i^{a,b}$ and $B_i^{c,d}$ are big, i.e.

$$\mathbb{P}\left(\left(\sigma,\sigma^{(i)}\right)\in B_{i}^{a,b}\right)\geq \frac{\varepsilon}{\operatorname{poly}\left(n,k\right)}, \quad \mathbb{P}\left(\left(\sigma,\sigma^{(j)}\right)\in B_{j}^{c,d}\right)\geq \frac{\varepsilon}{\operatorname{poly}\left(n,k\right)},$$
where $c\notin\{a,b\}.$

If *f* is neutral, may assume $\{a, b\} \cap \{c, d\} = \emptyset \rightsquigarrow \mathsf{IKM}$ (2009)

Now: assume $B_1^{a,b}$ and $B_2^{a,c}$ are big.

Fibers

- Partition the graph further, into so-called *fibers*
- Idea due to Friedgut, Kalai, Keller, Nisan (2008,2011)
- ► Ranking profile σ ∈ Sⁿ_k induces a vector of preferences between a and b:

$$\mathbf{x}^{a,b} \equiv \mathbf{x}^{a,b}\left(\sigma\right) = \left(\mathbf{x}_{1}^{a,b}\left(\sigma\right), \dots, \mathbf{x}_{n}^{a,b}\left(\sigma\right)\right)$$

where $x_i^{a,b}(\sigma) = 1$ if $a \stackrel{\sigma_i}{>} b$, and $x_i^{a,b}(\sigma) = -1$ otherwise.

- A fiber. $F(z^{a,b}) := \{\sigma : x^{a,b}(\sigma) = z^{a,b}\}$
- Can partition the graph according to fibers:

$$S_k^n = \bigcup_{z^{a,b} \in \{-1,1\}^n} F\left(z^{a,b}\right)$$

Small and large fibers

Can also partition the boundaries according to the fibers:

$$B_{1}\left(z^{a,b}\right) := \left\{\sigma \in F\left(z^{a,b}\right) : f(\sigma) = a, \exists \sigma' \text{ s.t. } (\sigma, \sigma') \in B_{i}^{a,b}\right\},\$$

Distinguish between small and large fibers for boundary $B_1^{a,b}$:

Definition (Small and large fibers)

Fiber $B_1(z^{a,b})$ is large if

$$\mathbb{P}\left(\sigma \in B_{1}\left(z^{a,b}\right) \middle| \sigma \in F\left(z^{a,b}\right)\right) \geq 1 - \mathsf{poly}\left(n,k,\varepsilon^{-1}\right)^{-1}$$

and small otherwise.

Notation: Lg $(B_1^{a,b})$: union of large fibers for the boundary $B_1^{a,b}$ Sm $(B_1^{a,b})$: union of small fibers for the boundary $B_1^{a,b}$

Cases

Recall: boundaries $B_1^{a,b}$ and $B_2^{a,c}$ are big.

Cases:

- Sm $(B_1^{a,b})$ is big
- ► Sm (B₂^{a,c}) is big
- Lg $\left(B_{1}^{a,b}\right)$ and Lg $\left(B_{2}^{a,c}\right)$ are both big

Large fiber case

Assume Lg $(B_1^{a,b})$ and Lg $(B_2^{a,c})$ are both big.

Two steps:

- ► Reverse hypercontractivity implies that the *intersection* of $Lg(B_1^{a,b})$ and $Lg(B_2^{a,c})$ is also big
- Gibbard-Satterthwaite implies that if

 $\sigma \in Lg(B_1^{a,b}) \cap Lg(B_2^{a,c})$, then there exists manipulation point $\hat{\sigma}$ "nearby": σ and $\hat{\sigma}$ agree in all except perhaps the first two coordinates.

~> many manipulation points.

Small fiber case (sketch)

Assume $\operatorname{Sm}\left(B_{1}^{a,b}\right)$ is big.

1. By isoperimetric theory, for every small fiber $B_1(z^{a,b})$, the size of the boundary, $\partial B_1(z^{a,b})$, is comparable:

$$\left|\partial B_{1}\left(z^{a,b}\right)\right| \geq \operatorname{poly}\left(n,k,\varepsilon^{-1}\right)^{-1}\left|B_{1}\left(z^{a,b}\right)\right|$$

2. If $\sigma \in \partial B_1(z^{a,b})$ in some direction $j \neq 1 \rightsquigarrow$ there exists a manipulation point $\hat{\sigma}$ "nearby", i.e. σ and $\hat{\sigma}$ agree in all but two coordinates

3. If $\sigma \in \partial B_1(z^{a,b})$ in direction 1, then either there exists a manipulation point $\hat{\sigma}$ "nearby", or fixing coordinates 2 through *n*, we have a dictator on the first coordinate.

- 4. Look at the boundary of the set of dictators
- ~> manipulation point nearby.

Subtleties...

- We cheated in a few places...
- ► Most importantly, when we apply Gibbard-Satterthwaite, we lose a factor of (k!)²...
- ▶ OK for constant number of candidates, but not for large *k*.

Refined rankings graph

- To get polynomial dependency, use refined rankings graph
- (σ, σ') ∈ E if σ, σ' differ in a single voter and an adjacent transposition
- Need to prove: geometry = refined geometry, up to poly (k) factors.
- Need to prove: combinatorics still works
- Gives manipulation by permuting only a few adjacent candidates

Quantitative Social Choice

Proof ideas

Coalitions

What if there is a coalition of voters?

- Various closely related "manipulation" problems
- Examples:
 - Coalitional manipulation
 - Bribery
- Various types of "manipulation":
 - Constructive
 - Destructive
- Is the coalition specified?
 - yes: decision problem
 - no: optimization problem

Unifying framework

Xia (2012) general results:

- votes are i.i.d.,
- SCF is a generalized scoring rule,
- ▶ then w.h.p. the number of vote operations needed is either $0, \Theta(\sqrt{n}), \Theta(n)$, or ∞
- More specific results available for
 - specific problems,
 - specific voting rules,
 - specific distributions (e.g., uniform).

Bribery

- Question: can the winner be changed...
 - ...by any coalition of a particular size?
 - ...by a specific coalition of a particular size?
 - ...to a specific candidate? (constructive)
 - ...to just any other candidate? (destructive)
- Procaccia & Rosenschein (2007), Xia & Conitzer (2008):
 - votes are i.i.d.,
 - SCF is a generalized scoring rule,
 - ► if the coalition size is $o(\sqrt{n})$, then w.h.p. all such coalitions are powerless
 - ▶ if the coalition size is $\omega(\sqrt{n})$, then w.h.p. such a coalition is all-powerful
- Pritchard and Wilson (2009):
 - votes are uniform,
 - SCF is a scoring rule,
 - ► then minimum size of a succesful manipulating coalition is $C(w)\sqrt{n}$, where the distribution of C(w) is explicit.

Smooth phase transition for bribery

Question: can the winner be changed...

- ...by any coalition of a particular size?
- ...by a specific coalition of a particular size?
- …to a specific candidate? (constructive)
- ...to just any other candidate? (destructive)
- Suppose the coalition has size $c\sqrt{n}$.
- ► Question: what is the phase transition like as c goes from 0 to ∞?
- Mossel, Procaccia, R. (2012): smooth when
 - votes are i.i.d. (and $p(\pi) \ge \delta$ and $\mathbb{P}(W_a) \ge \varepsilon$),
 - SCF is a generalized scoring rule.

Take aways

- Robust impossibility theorems: manipulation is computationally easy on average
- Interesting math involved

Take aways

- Robust impossibility theorems: manipulation is computationally easy on average
- Interesting math involved

Thank you!